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a b s t r a c t

This paper deals with the design of failure mode power management (PM) of hybrid power systems
(HPS) during a shipboard power source failure, which is an important scenario that the all-electric ships
(AES) targeting military applications have to deal with. The control objective is to manage the power
flow from working power sources and battery to ensure survivability, namely, ensuring system safety
and maximizing the load support. The on-demand nature of the problem due to unpredictable failure
times makes real-time control a key requirement. The survivability mandates, along with large scale,
ybrid power systems
ower management
eal-time optimization
eference governor

nonlinear HPS dynamics and long warmup times of the backup power sources, make most of the existing
control strategies ineffective to meet the real-time requirements. With the focus on achieving real-time
computational efficiency, a novel hierarchical control approach using reference governor is proposed.
A top level controller determines a sub-optimal power split between the battery and working source
to meet the demand on the HPS and the local controllers govern the power demands for the individual
power sources to enforce constraints. A case study of the proposed controller on a scaled HPS test-bed

ompu
illustrates the real-time c

. Introduction

As the engineering communities are seeking more clean and effi-
ient ways of power generation, hybrid power systems (HPS) are
ecoming increasingly popular, and have been pursued as solu-
ions for both land-based and mobile applications. The shipboard
ntegrated power system (IPS) [1,2] used in all-electric ship (AES)
s a representative example of HPS and provides the motivating
pplication for this work. The main components of a typical DC
PS, as shown in Fig. 1, include power sources, power convert-
rs, energy storage devices (ESD) and loads. The key feature of a
PS is that it involves multiple power sources that can augment
ach other in the power generation capability to boost the overall
ystem efficiency and reduce environmental impact. For the HPS
argeting the AES, we consider gas turbine/generator and fuel cell
or the power sources [3] given their complementary efficiency and

ynamic characteristics. For ESD we use battery that has substantial
torage capacity. Even though the load shown in Fig. 1 represents
he entire power demand on the HPS, these loads are further clas-
ified as critical and non-critical [4] for the AES.
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tational efficiency and improved HPS survivability.
© 2010 Elsevier B.V. All rights reserved.

Given the heterogenous nature of the HPS components, power
management (PM) of HPS is necessary to manage the power from
the battery and sources to meet load demands in a timely manner.
Since the shipboard HPS targeting military applications are highly
susceptible to damages, the design of PM system should also protect
the power system from the effects of the failures. Typically back-
up power sources can be used to deal with the failures, but these
sources take time to warm up during which the ability of the HPS to
meet the onboard power demand could be greatly compromised.
Hence in this paper, we consider the optimal control of shipboard
HPS during a power source failure, with the goal of improving sur-
vivability. In this work we define survivability as the capability of
power management system to sustain critical shipboard operations
and recover normal functions while ensuring the safety of the HPS
components.

For the HPS considered in this work, the control objective is to
determine the power that can be safely demanded from the bat-
tery and the working power source (gas turbine or fuel cell) and
achieve optimal performance in terms of power tracking and effi-
ciency. The optimal control has to deal with the following problem
characteristics
• On-demand survivability goals due driven by the unpredictable
timing of component failure.

dx.doi.org/10.1016/j.jpowsour.2010.07.041
http://www.sciencedirect.com/science/journal/03787753
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Without loss of generality, we denote TF = 0 as the instant when
one of the power source fails, at which an additional power source
is brought on with a warm-up time represented by Tw discrete time
steps, where [0, Tw] is the warmup horizon. Let fS(xS, uS), hS(xS, uS)
denote the working source (gas turbine or fuel cell) dynamics and

Table 1
Nomenclature used in PM controller design.

Variable Description

xS , uS , PS Working source states, control inputs and power output (kW)
SOC, QB Battery state of charge and capacity (Ah)
IB Current drawn from the battery (A)
VB , PB Battery voltage (V) and power output (kW)
Fig. 1. Example of a hybrid power system.

Long time horizon associated with warm-up periods of a backup
power source.
Difficulties in obtaining analytical models for HPS components.
Active use of energy storage to support critical functions when
the back-up source is warming up.

These characteristics require that the optimal control has to be
xecuted in real-time without computational delay and enforce
omponent safety all through the extended time horizon till the
ack-up source is warmed up. These two requirements make the
ptimal control problem challenging.

The existing work on the failure mode PM for shipboard power
ystems [5–11] mostly deals with network restoration through
oad shedding and does not consider non-critical load support
s a performance attribute. This attribute is especially important
o improve survivability where recovering the normal shipboard
unctions is necessary.

The problem under consideration has been treated as trajectory
lanning problem in the power management of commercial hybrid

and vehicles. Existing literature ([12,14] and references there-in)
or the power management of fuel cell-battery hybrid systems con-
ider both horizon based and instantaneous optimization methods.
hese include dynamic programming (DP) [12], stochastic dynamic
rogramming (SDP) [13] and equivalent fuel consumption mini-
ization (ECMS) [14]. While the “curse of dimensionality” makes
P impractical for real-time control, the lack of a transition proba-
ility function makes SDP and ECMS based methods unsuitable to
ttain the control objective considered in this work.

Model predictive control (MPC) [15,16] is another popular
pproach proposed in literature for solving the optimal control
roblem, where a relatively short time horizon can be considered
or the benefits of computational efficiency. A receding horizon
ontrol (RHC) approach can be adopted in order to deal with
he extended horizons associated with power source warm up
imes. While MPC is suitable for real-time control, one key dis-
dvantage is the difficulty in achieving a good tradeoff between
eal-time computational efficiency and guaranteeing long term
afety which motivates the need to seek alternate approaches for
ower management during failures. Here, we define the real-time
omputational efficiency as the ability to solve the optimal control
roblem at a given sample rate.

In this paper, we propose a hierarchical optimal control strategy
hat utilizes the power demand profile information to enforce com-
onent safety in the long-term and support the non-critical loads
s much as possible while maximizing the battery usage. The key
erits of the proposed approach are the real-time efficiency and

he experimental validation results on a scaled test-bed. To achieve
eal-time efficiency, we explore the nature of the failure mode

roblem where constraint enforcement (namely ensuring compo-
ent safety) is the key consideration and hence recast the optimal
ontrol problem to treat safety and performance separately.

At the top level, we ignore the component dynamics and deter-
ine the sub-optimal power split between the battery and the
Sources 196 (2011) 1599–1607

working source to meet the HPS load demand. At the second level,
we formulate the constraint enforcement problem using reference
governor (RG), where the demand to the working source and energy
storage is governed to ensure safety [17,18]. The RG approach
is a natural formalism for constraint enforcement. It involves a
one-dimensional search (hence is much simpler as compared to
other RHC methods) and allows long horizon look ahead without
compromising real-time performance. In order to account for the
performance deterioration due to ignoring power source dynam-
ics at the top level, we utilize the battery to improve the power
tracking performance based on coordination between the working
source and energy storage.

The paper is organized as follows: In Section 2, the optimal con-
trol problem for failure mode PM is formulated and the hierarchical
controller is proposed. In Section 3, the HPS model is summa-
rized. The proposed controller is applied to the HPS model and
the real-time optimization results on an experimental test-bed are
presented in Section 4, along with concluding remarks in Section
5.

2. Problem formulation and proposed hierarchical
controller

In this section we formulate the optimal control problem and
propose the hierarchical control strategy. We ignore the power con-
verters and only consider the battery and power sources for HPS
components, given the fact that the dynamics of the power con-
verters (�s) are much faster as compared to the sources (ms). We
consider the scenario of a power source failure with unpredictable
failure time, even though the ideas used in the controller devel-
opment can be extended to failure of other HPS components. We
assume that a back-up source is added to the HPS at the instant the
failure occurred and define the warmup period as the time from the
instant of failure to the time when the back-up source is fully func-
tional. Then, the problem is formulated to capture the following
objectives during the warm-up period.

• Enforcing the battery and working power source physical con-
straints throughout the backup power source warming up period.

• Meeting the critical load demand all through the warmup period
and support the non-critical loads as much as possible.

It must be noted that for the HPS considered in this work, the
working power source can be either gas turbine or fuel cell. We first
describe the power plants and the safety constraints before formu-
lating the optimal control problem. The nomenclature adopted in
the power management controller development is given in Table 1.
Script Description

cr Vital/critical load
d Demand/reference variable
rg Reference governor output
SS, * Steady state and optimal variables
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treat the battery storage mechanism and capacity as constraints.
We consider the power split as sub-optimal solutions because even
though the battery charge/discharge dynamics can be ignored using
G. Seenumani et al. / Journal of P

utput function respectively. Then, the nonlinear HPS dynamics are
escribed by

S,k+1 = fS(xS,k, uS,k) (1)

SOCk+1 = fB(SOCk, IB,k)
PS,k = hS(xS,k, uS,k)
PB,k = hB(SOCk, IB,k)

(2)

here uS,k is the fuel input to the working power source.
We consider two constraints that the control algorithm has to

nforce during the warmup period:

. Component Physical Constraints:
• To prevent gas turbine compressor surge or fuel cell hydro-

gen starvation, depending on which power source fails (˚S),
and ensure that the battery power and capacity are less than
their corresponding maximum limits (PMax

B , Q Max
B ). These con-

straints are given by,

˚S(xS,k, uS,k) ≤ 0, (3)

˚B(SOCk, IB,k) ≤ 0, (4)

where ˚B = [PB,k − PMax
B , QB,k − Q Max

B ]
T

• To ensure that the control inputs are within the saturation
limits given by

uS,k ∈ [uMin, uMax]. (5)

. Critical demand constraint given by

PS,k − PB,k ≤ −Pcr,k. (6)

The cost function J captures the performance in terms of
inimizing the power tracking error and working source fuel con-

umption over the warmup horizon and is given by

=
Tw∑

k=0

us,k + �(Pd,k − PS,k − PB,k)2

here � � 1 is a penalty factor to achieve fast demand tracking.
hen the optimal control problem formulation is given by

I∗B,[0:Tw], u∗
S,[0:Tw]] = arg min

IB,k,uS,k

J (7)

ubject to constraints (1)–(6) that need to be enforced over [0, Tw].
Given the extended warmup horizon and the computational

emand in solving the optimization problem (7), we have to con-
ider a shorter prediction horizon of length N(N � Tw) in order
o use the MPC approach for real-time control. The optimal con-
rol inputs at every time instant (u∗

S,k
, I∗

B,k
) are then determined by

olving the following problem

I∗B,[k:k+N−1], u∗
S,[k:k+N−1]]=arg min

IB,k,uS,k

k+N−1∑
i=k

uS,i+(Pd,i − PS,i − PB,i)
2,

(8)

ubject to constraints (1)–(6). Note that for the MPC formulation,
he constraints are enforced over the prediction horizon, namely
k, k+N − 1], where k is any given time instant. To determine the
ptimal control inputs over the entire warmup period, the problem
n (7) is solved repeatedly for every time instant k ∈ [0, Tw] adopting
he receding horizon approach.
emark 1. The MPC problem in (8) is a nonlinear optimization
roblem whose computational effort depends on the dimension of
he problem, namely the number of states (n), control inputs (m)
nd length of the optimization horizon (N). For most of the exist-
ng algorithms, the computational effort required to determine the
Fig. 2. Structure of the proposed hierarchical controller.

optimal solution does not scale linearly with the addition of more
HPS components. In addition, the choice of N plays a very important
role as there exists a trade-off between reducing the computational
effort and enforcing safety constraints. A short-sighted approach
(small N) may significantly reduce the computational effort, but
cannot guarantee successive feasibility1 during the warmup period.

The issue raised in Remark 1, motivates us to seek alternate
control approaches to solve the failure mode PM in (7), given the
real-time control requirement.

2.1. Hierarchical RG-based control

Given the large scale nature of the problem, our goal is to
simplify the problem (7) by leveraging the nature of the control
required for failure mode operations. Here the primary function
of the PM is to achieve safety enforcement during the entire
the warmup period. Since the power tracking performance is
secondary to the safety enforcement, the key idea used in the pro-
posed controller is to decouple the power tracking from constraint
enforcement and recast the optimization problem in (7) to treat the
two requirements separately. This approach allows using simpler
mechanisms targeting constraint enforcement (e.g reference gov-
ernor). The following assumptions are made before proceeding to
the controller development.

A1. Power can be drawn instantaneously from the battery pack
subject to the capacity limits.

A2. For the HPS considered in this work, the fuel consumption for
the power sources at steady state (Wf) is a quadratic function of the
power demand (P), with Wf = �(P).

A3. The power demand profile, namely the load demand on the
HPS during the warmup period, is piecewise constant with � step
changes in load, where the time associated with each step and the
constant value (after the step change) is denoted by Kj and Pj

d
for

j ∈ [1, �].

Under these assumptions, we propose a two level hierarchical
controller (Fig. 2) to approximate the optimal solutions to the prob-
lem (7). At the top level, the battery and working source dynamics
are ignored and a sub-optimal source battery power split is com-
puted by solving a steady state optimization problem. Here we
assumption A1, the power sources still have associated dynamics.

1 Successive feasibility is defined as the existence of a feasible solution for the
optimization problem at every iteration.
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t the next level, we deal with the constraint enforcement over the
armup period using reference governor-based approach.

emark 2. It must be noted that the fuel-power mapping function
f the gas turbine or fuel cell need not be a quadratic function of the
emanded power. However, in this work, we make assumption A2
ased on curve-fitting the fuel cell and gas turbine individual fuel
onsumption versus the demanded power. The curve-fitting was
one using the steady state fuel-power map of the power sources

emark 3. Even though the RG can strictly enforce safety con-
traints, being an add-on mechanism it requires the reference
nputs, namely the power demand to the working source and bat-
ery, to be pre-computed. Hence we need to solve the top level
ptimization problem in order to determine the sub-optimal bat-
ery, source power demand trajectories.

We delineate the proposed two level controller in the remainder
f this section.

.1.1. Level 1: quadratic programming for battery source power
plit planning

At this level, an approximate power split between the bat-
ery and the working source over the warmup period [0 : Tw]
s determined. The power split is computed by solving a steady
tate optimization problem, given the benefits of computational
implicity. Let ˛j

B, ˛j
S denote the battery, source power split param-

ter associated with each piecewise constant (See assumption A3)
ower level Pj

d
and PS

d,k
, PB

d,k
denote the power demand on the

attery and source given by

S
d,k = ˛j

SPj
d
, k ∈ (Kj, Kj+1), (9)

B
d,k = ˛j

BPj
d
. (10)

The key idea is to formulate the cost function and the constraints
n terms of the power split parameters because at this level our goal
s to solve a steady state optimization problem. The cost function
o achieve fast and efficient power tracking is defined as

1 =
Tw∑

k=0

�(Pd,k − PS
d,k − PB

d,k)
2 + Wf,k,

here Wf,k = �(PS
d,k

) is the fuel consumption.
For the power sources, the input saturation constraints in (5)

re specified in terms of the steady state minimum (PMin) and max-
mum (PMax) power corresponding to the working source fuel limits
nd is given by

Min ≤ PS
d,k ≤ PMax. (11)

The battery constraints, namely the power and capacity limits
re given by

B
d,k ≤ PMax

B , ∀k ∈ [0 : Tw], (12)

1
Vdis

k∑
i=0

PB
d,i ≤ Q Max

B , ∀k ∈ [0 : Tw], (13)

here Vdis denote the battery discharge voltage.
The critical demand constraint in (6) is enforced using

PS
d,k − PB

d,k ≤ −Pcr,k (14)
f ˛S = [˛1
S , . . . , ˛�

S ] and ˛B = [˛1
B, . . . , ˛�

B], the top leveoptimization
roblem is then given by

˛∗
S, ˛∗

B] = argmin
˛S,˛B

J1 (15)
Fig. 3. Schematic of reference governor.

subject to constraints (11)–(14). The top level battery, source power
demand trajectories denoted as P∗,B

d,[0:Tw], P∗,S
d,[0:Tw] is then computed

using (9) and (10).

Remark 4. Under assumption A3, the optimization problem in
(15) is a quadratic programming (QP) problem. The computational
effort does not depend on the length of the planning horizon (N) or
the number of states (n) and control inputs (m), and hence suitable
for real-time implementation.

Remark 5. We consider the discharge voltage limit in (13) instead
of the actual battery voltage (VB) to compute the current drawn
from the battery. This is done for two reasons: First, to formulate
the capacity constraint as a linear constraint so that the top-level
problem is a QP problem. Second, to ensure the nonlinear capacity
constraint satisfaction (4), whenever the linear capacity constraint
in (13) is enforced, where the nonlinear capacity constraint is
given by

1
Vbatt

k∑
i=0

PB
d,i ≤ Q Max

B , ∀k ∈ [0 : Tw].

To see this, note that since Vdis ≤ Vbatt, if (1/Vdis)
∑k

i=0PB
d,i

≤
Q Max

B , this inequality implies that (1/Vbatt)
∑k

i=0PB
d,i

≤ Q Max
B . Even

though this approach will result in a lower battery utilization as
compared to the optimal solutions derived by solving (7), the ben-
efits of the computational efficiency makes it attractive.

2.1.2. Level 2: reference governor for constraint enforcement
At this level, a reference governor is designed to track the power

demand trajectories from level 1 (P∗,S
d

and P∗,B
d

) as quickly as possi-
ble. This is an add-on mechanism (Fig. 3), where there is a designed
nominal controller in the loop to regulate the performance vari-
ables. In this work, it is assumed that the nominal controllers are
available and the focus will be directed to the reference gover-
nor design. Based on [18], the reference input, which is the power
demand in this case, is modified at every time instant till the con-
straints (3)–(6) are satisfied and is determined as follows:

PS
rg,k = PS

rg,k−1 + ˇ∗,S
k

(P∗,S
d,k

− PS
rg,k−1), (16)

PB
rg,k = PB

rg,k−1 + ˇ∗,B
k

(P∗,B
d,k

− PB
rg,k−1), (17)

where ˇS
k
, ˇB

k
∈ [0, 1] can be viewed as nonlinear, time-varying filter

parameters for the working source and battery, respectively.
In order to have the governed value, namely PS

rg,k
, PB

rg,k
, track the

power demand, the RG maximizes the filter parameters (ˇS
k
, ˇB

k
) at

every instant. The optimal filter parameters for the working source
and battery are then determined as

ˇ∗,S
k

= arg max ˇS
k (18)
subject to constraints

˚S(xS,i, uS,i) ≤ 0, ∀i ∈ [k : k + Ns], (19)

−PS,i ≤ PB,i − Pcr,i, (20)
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In this section, we develop an control-oriented dynamic model
G. Seenumani et al. / Journal of P

∗,B
k

= arg max ˇB
k (21)

ubject to constraints

B(SOCi, IB,i) ≤ 0, ∀i ∈ [k : k + Ns], (22)

PB,i ≤ PS,i − Pcr,i, (23)

here Ns is the simulation horizon inside which the constraints
eed to be enforced. This is done by simulating the model multiple
imes at each sampling instant to check the constraint feasibil-
ty given in (19), (20), (22) and (23). It must be noted that in the
roposed two level controller, the optimal power split planning
roblem (15) is solved once at k = 0, while (18) and (21) are solved
t each instant k, with xS,k, SOCk being updated by the new state
easurement for each new optimization run.

emark 6. The optimization problems in (18) and (21) are 1D
earch problems as compared to the RHC approach where the
imension of the search space is mN. At each instant the optimiza-
ion parameter (ˇk) can be determined using bisectional search,
here the HPS model is simulated for the simulation horizon

[k : k + Ns]). If constraint violation occurs then ˇ is reduced and the
imulation is re-initiated. If all the constraints are satisfied, then
he value of ˇ is increased to achieve better power tracking and the
earch is repeated till ˇ converges.

emark 7. The simulation horizon is chosen such that if the
eference input is held constant after the time instant k and the con-
traints are satisfied over the time interval [k:k + Ns], then they will
e also satisfied over the interval for any Na > Ns, which is typically
he settling time of the system dynamics. To guarantee feasibil-
ty throughout the reconfiguration process, we choose a relatively
arge simulation horizon which is 3–5 times the system time con-
tant. Even though a larger simulation horizon Ns implies increased
odel simulation time, since the search is over the optimization

arameter space, this does not increase the optimization problem
imension and hence the computational effort. On the contrary, in
he model predictive control approach, an increase in optimization
orizon N will increase the dimension in search space and thus the
omputational effort.

emark 8. In standard reference governor implementation, the
nput is held constant over the simulation horizon [k : k + Ns]. How-
ver, since the time-varying reference input is known during the
ntire warmup period for both the battery and the working power
ource, we utilize this information and hence consider the time
arying reference input (PS

d,[k:k+Ns], PB
d,[k:k+Ns]) in the implementa-

ion which is given as

S
d,i = min(PS,∗

d,i
, PS,∗

d,k
), ∀i ∈ [k, k + Ns], (24)

B
d,i = min(PB,∗

d,i
, PB,∗

d,k
). (25)

The schematic of the reference governor implementation is
iven in Fig. 4.

.1.3. Modifying reference input using coordination
Under assumption A1, the battery power output (PB) will track

he reference input (P∗,B
d

) perfectly when ˇ∗,B
k

= 1. However, for the

orking source, even if the ˇ∗,S
k

= 1, there will be imperfect tran-
ient power tracking due to ignoring the source dynamics in the
op-level optimization. Note that, since the battery can be used to
upport pulse loads (Assumption A1), we can utilize the battery

o improve the transient power tracking. To do so, we use ideas
rom distributed model predictive control [19], where coordina-
ion between the battery and working power source is required.
ere, the implementation requires communication from the work-

ng source to the battery at every instant regarding the steady state
Fig. 4. Schematic of reference governor implementation.

control associated with the optimally governed reference trajec-
tories. Then, at the next time instant, the reference input to the
battery is modified based on the predicted working source power
tracking performance.

Algorithm 1. Given xS(0), SOC(0) and the power demand Pd,[0:Tw],
we propose the following algorithm to solve (7)

1. At k = 0, determine optimal power split P∗,S
d,[0:Tw] and P∗,B

d,[0:Tw] by
solving (15).

2. At each time instant k, using P∗,S
d,[k:k+Ns], P∗,B

d,[k:k+Ns],

(a) Modify the reference input to the battery as P∗,B
d,[k:k+Ns] + eS ,

where

eS =
{

01,Ns , k = Tf

P∗,S
d,[k:k+Ns] − PC

[k:k+Ns], k > Tf

where PC
[k:k+Ns] is the output trajectory associated with

uC
[k:k+Ns−1] given by (26).

(b) Compute the time varying PS
d,[k:k+Ns] and PB

d,[k:k+Ns] using (24)
and (25).

(c) Determine PS
rg,[k:k+Ns], PB

rg,[k:k+Ns] using (16) and (17).
(d) Determine the feed-forward steady state control input

uS,[k:k+Ns] associated with PS
rg,[k:k+Ns] and battery current

IB,[k:k+Ns], given as
PB

rg,[k:k+Ns] − IB,[k:k+Ns]VB,[k:k+Ns] = 0,

where the VB,k is the battery voltage.
(e) Apply uS,k and IB,k (step 2(d)) as the approximation to the

optimal solutions of (7).
(f) Construct and transmit the coordination control sequence, to

the battery which is given as

uC
[k+1:k+Ns+1] = [uS,[k+1:k+Ns], uSS

[k+Ns+1]], (26)

where uSS
[k+Ns+1] is the steady state control associated with the

power demand to the working source P∗,S
d,[k+Ns+1].

Remark 9. It should be noted that we denote the controller imple-
mentation as uncoordinated (w/o C) if the step 2(a) of Algorithm
I is not implemented and with coordination (wC) if Algorithm I is
exactly implemented.

3. Control-oriented HPS model
of the HPS in order to apply the algorithm proposed in Section 2.
The HPS model consists of the component models, namely, battery,
gas turbine and fuel cell whose dynamics are delineated below.
For the case study presented in the sequel, we assume a gas tur-
bine failure. Hence we will only summarize the fuel cell/reformer
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Table 2
FC model nomenclature.

Variable Description

cp,FR Constant ratio specific heat of FR material (kJ (kg K)−1)
E Open circuit fuel cell voltage
hin , hout Specific enthalpy (J kg−1) of inlet and outlet FR flows
mFR Mass inside the reformer unit (kg)
Man , MH2 Molecular mass of anode material and hydrogen (kg mol−1)
nc Number of fuel cells in the stack
Nin , Nout Molar flow rates in and out of the FR (mol s−1)
pan ,pH2,an Anode total and partial pressure (Pa)
R Universal gas constant (J (K mol)−1)
TFR , Tan FR and anode temperature (K)
vohm, vact , vconc Ohmic, activation and concentration loss, respectively (V)
Van Anode volume (m3)
WFR,in Total flow into the FR (kg s−1)

−1

The stack voltage is a function of the fuel cell temperature and
pressure and is given by vst = nc(E − vact − vohm − vconc). Further
details of this model can be obtained from [22].

Table 3
HPS state and optimization parameters used in the case study.

Name Value

Fuel cell states (xS,0) [0.23 mol s−1, 90075.5 Pa, 963.2 K]T

Battery SOC states (SOC0) 1
Battery type VL-39P Li-Ion (23 modules)
Critical demand Pcr,k ≥ 1000 kW

Starvation constraint 0.04 − pH2 ,an,k

pan,k
≤ 0
Fig. 5. Schematic of fue

ynamics along with the battery model and further details on the
PS modeling can be found in [20].

.1. Battery model

Even though many battery models have been proposed in [21],
he resistance model is chosen for the sake of simplicity. The battery
oltage VB is given as

B = Voc(SOC) − IBRB, (27)

here V∝ is the open circuit cell voltage and RBatt is the internal
esistance of the battery. For this work, we use a VL34P Li-ion bat-
ery and using the data sheet the open circuit voltage is curve-fit
s a sixth order polynomial of the battery capacity (QBatt in Amp-
r). The internal resistance of the Li-Ion battery is assumed to be
onstant and is RBatt = 65 m� per module.

.2. Fuel cell and reforming unit

We consider a Polymer Electrolyte Membrane (PEM) fuel cell
long with a fuel processing system (FPS). The FPS+FC (Fig. 5) sys-
em consists of a hydro desulphurizer (HDS), heat exchanger (HEX),

ixer (MIX), fuel reformer (FR) that converts the fuel flow to pure
ydrogen, water gas shift reactor (WGS) for gas clean up and fuel
ell anode dynamics. A detailed 10 state model of the FPS+FC sys-
em along with relevant assumptions has been developed in [22]. In
his work, we summarize a reduced order model that captures the
ystem dynamics as well as operating constraints such as fuel star-
ation. Based on the linear analysis of the 10 state model around
ifferent operating points, we found that the dominant modes cor-
esponded to the FR temperature, HDS and the anode hydrogen
artial pressure. Therefore, our reduced order model has three
tates. The inputs to the FPS+FC are fuel and air flow, while the
tack current is considered as a disturbance. Since the stack cur-
ent (Ist) is measured, the fuel and air flow are determined by a
tatic feed-forward map to control the steady state fuel utilization
UH2 ) to 0.8 as given in [22]. The variables and parameters used in
C model are defined in Table 2 and the models of the dominant
omponents are described as follows:

.2.1. Hydro desulphurizer
The HDS is represented as a first order lag with a large time con-

tant (�HDS = 5 s) that reflects the slow dynamics of the linearized
odel given in [22], the other two slow dynamics being the FR

emperature and the anode hydrogen partial pressure.

.2.2. Fuel reformer
The FR model is developed in [22] and is summarized here. The

emperature dynamics using energy balance is given by
dTFR

dt
= 1

mFRcp,FR
[Ninhin − Nouthout] (28)

here the inlet flow consists of the fuel and air flow and the outlet
ow includes the following species: CH4, CO, CO2, H2, H2O, and N2.
WFR,H2 , WFR,out Hydrogen and total flow out of FR (kg s )
WH2,react Reacted hydrogen inside anode (kg s−1)
WH2,an , Wan Hydrogen and total anode exit flow (kg s−1)

3.2.3. Anode
The anode partial pressure dynamic using mass balance is given

by

dpH2,an

dt
= RTan

MH2 Van
(WFR,H2 − �an

H2
Wan − WH2,react),

�an
H2

=
(

MH2

Man

)(pH2,an

pan

)
.

(29)

where WFR,H2 is the hydrogen flow from the reformer, Wan,
WH2,react are the anode outlet flow and reacted hydrogen as given in
[22]. The air supply is assumed to be instantaneous and the cathode
pressure follows the anode pressure.

3.2.4. Stack voltage model
Maximum battery power (PMax
B

) 95 kW per module
Maximum battery capacity (Q Max

B
) 22 Ah per module

Sample time Ts = 0.05 s
Failure instant Tf = 0
Warmup period Tw = 5 min
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Table 4
Comparison of RHC and RG methods for computational effort versus length of
horizon.

Method Horizon length Off-line computation effort

RHC N = 40 TRHC = 1783 s
Fig. 6. Scaled test bed of HPS [23].

. Case study

We consider a gas turbine failure for the case study and apply the
roposed controller on the HPS model developed in the previous
ection. The demand on the HPS is represented as a hypothetical
ower profile (Fig. 7) that was chosen based on [2]. The case study
arameters are shown in Table 3. Since we are emulating a gas tur-
ine failure, the Tw is chosen to be Tw = 5 min, which corresponds to
he warm-up times for ship-service gas turbines [2]. The main pur-
ose of the case study is to illustrate the benefits of the controller

n Algorithm 1. In particular two aspects are highlighted:

Real-time computational efficiency of the proposed controller as
compared to the MPC. We make the comparison using short and
long constraint horizons in order to show that the proposed con-
troller can have a longer simulation horizon without incurring
polynomial increase in the computational effort. Therefore, the
proposed method can be used to achieve long term constraint
enforcement in real-time.
Real-time performance improvement using the proposed con-

troller as compared to the MPC method in terms of power tracking
and fuel consumption.

We discuss these aspects mainly to show that even with the spe-
ific shipboard problem characteristics (described at the beginning

ig. 7. Real-time power tracking with (wC) and without (w/o C) coordination.
40
RHC N = 200 24.1 TRHC

40
RG Ns = 40 TRG

40 = 6 s
RG Ns = 200 1.2 TRG

40

of this paper), the proposed controller can still enforce the safety
constraint throughout the warmup period and support non-critical
loads quickly in real-time. Even though safe backup strategies
always exist, without the real-time efficiency, the survivability of
the HPS will be compromised, either in terms of non-vital load
support or the component safety.

The implementation of the two level hierarchical controller was
done both off-line and in real-time where we used a Pentium® pro-
cessor for the off-line and a dual core OpalRT® realtime target for
online optimization. In the sequel, we first describe the experimen-
tal set-up and then the controller results.

4.1. Experimental setup

Fig. 6 shows the scaled test-bed for the hybrid power system,
which includes the OpalRT® real-time simulator, two unidirec-
tional and one bidirectional DC–DC full bridge convertors, DC
power sources and loads. The two unidirectional DC/DC converters
(marked as DC/DC1 and DC/DC2 in Fig. 6) are the Full Bridge Con-
verter (FBC) while the bidirectional DC/DC converter (DC/DC 3) is
the Dual Active Bridge Converter (DABC). The convertors used in the
test-bed require 10 kHz modulation signals and have a bandwidth
of 1 kHz and are much faster than the power sources considered in
this work which have a bandwidth of about 10 Hz. The details on
the hardware development for the DC–DC converters can be found
in [23].

The two programmable power supplies are the Sorensen® SGA
100 A/100 V 10 kW AC/DC power supply. The output voltage of the
programmable power can be controlled through an analog signal
using OpalRT®, thereby making it a power source emulator. We use
the 5.2 kW Chroma® 63204 10 A/100 A 125 V/500 V programmable
DC loads to emulate the ship service load.

The OpalRT® simulator has the following functions: (1) running
the controller and plant model in real-time; (2) commanding the
DC power source to emulate the fuel cell; (3) generating the 10 kHz
pulse width modulated (PWM) signals required for controlling the
hardware-in-loop DC–DC convertors. For the case study, Target 1
runs at a sampling rate of 100 �s which is the base rate for the
IPS model, while the other two targets run at 50 ms which is the
sampling rate of the power generation module.

4.2. Optimization results and comparison

We consider two different lengths for the prediction (N) and
simulation horizon (Ns) and solve the optimal control problem in

(7) using the proposed controller and the RHC approach. The goal
of this effort is to understand the tradeoff between computational
effort and constraint enforcement, where a larger prediction hori-
zon is required to ensure long term system safety.

Table 5
Real-time computational effort.

Method Real-time computation effort Off-line cost Real-time cost

RHC N = 40 0.642 s 16.1 647
RGNs = 150 0.0003 s 34.4 34.4
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Table 4 shows the comparison of the offline computational effort
f the RHC and RG methods as the optimization and simulation
orizon is increased, respectively. We denote the computation
ffort associated with the shorter horizon for RHC (N = 40) and
G (Ns = 40) methods as TRHC

40 , TRG
40 . For this case study, we have
RHC
40 = 1783 s and TRG

40 = 6 s for a single optimization run at each
ample instant. It can be seen that for the RHC based approach the
ncrease is O(N2) (24.1 times) as compared to RG (1.2 times) which
s in accordance with Remark 7.

Fig. 9. Battery and fuel cell constraint
) and without (w/o C) coordination.

The performance benefits of the proposed controller, due to
its real-time computational efficiency, is illustrated in the sequel.
Here, the performance is specified in terms of working source fuel
consumption and power tracking error over the warmup period
given as

∑Tw

k=0�(Pd,k − PS,k − PB,k)2 + uS,k. The real-time compu-

tational effort along with the off-line and real-time performance
is shown in Table 5. The off-line cost using the proposed control
approach is sub-optimal as compared to the RHC approach (Col-
umn 3), which is due to ignoring the working source dynamics at

s for the case with coordination.
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he top level controller. In real-time it takes 0.3 ms (<Ts) for the
ub-optimal solutions to be available using the reference governor
pproach as compared to the 0.642 s (>Ts) when RHC method is
mplemented. Hence till the optimal solutions become available,

e apply the control input at the previous instant to ensure con-
traint satisfaction which results in a performance loss in real-time
sing the MPC approach (Column 4).

Fig. 7 shows the real-time power tracking trajectories with (wC)
nd without (w/o C) using coordination (Remark 9). It can be seen
hat the demand tracking can be improved using coordination,
here the battery can be utilized in order to compensate for the
erformance loss due to ignoring the fuel cell dynamics in the
op-level optimization as shown in Fig. 8. The proposed controller
nforces the fuel cell starvation constraint and the battery capacity
onstraint as shown Fig. 9. It can be seen that the battery state of
harge constraint at the end of the warmup period is not active,
hich means that we are under utilizing the battery. Even though

his may seem counter-intuitive at the onset, this is very much in
ccordance to Remark 6.

. Conclusions

In this paper, we proposed a hierarchical optimal controller for
ailure mode power management of HPS for shipboard applica-
ions to sustain critical functions and recover normal operations
uring failures. The use of this approach is beneficial in ensuring

PS survivability due to the real-time computational efficiency.
e have demonstrated using a case study that the proposed con-

roller enforces the safety constraints in the long-term and also
chieves better real-time performance as compared to model pre-
ictive control-based approach.
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